Flood Forecasting Using Artificial Neural Network

نویسندگان

چکیده

Abstract The process of assessing the timing, amount, and period flood events based on observed features a river basin is known as forecasting. Floods cause lots damage to properties create risk human life. Flood forecasting critical for developing appropriate management strategies, reducing hazards, evacuating people from flood-prone areas. main objective this study apply artificial neural networks flow in Deo River, located Gujarat. Rainfall discharge are parameters considered model development. developed validated test accuracy model. Trained models evaluated using performance indices. Six alternative prediction have been ANN. These various training algorithms. A single layer feed forward back-propagation network with six different algorithms (Scaled conjugate gradient, Levenberg Marquardt, Resilient back-propagation, Conjugate Cascade back propagation, Bayesian regularization) was developed, 70% data used 30% validation. created models’ assessed statistical parameters. best obtained an ANN algorithm, which had coefficient correlation (r) 0.83, determination (R 2 ) 0.70, root mean squared error (RMSE) 5.58 0.89, 7.27 forecast inflow very close values. This shows that can be successfully predict floods, by control departments across country

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Daily Runoff Forecasting using Artificial Neural Network

Rainfall-Runoff is the most important hydrological variables used in most of the water resources applications. Watershed based planning and management requires thorough understanding hydrological process and accurate estimation of runoff. An Artificial Neural Network (ANN) methodology was employed to forecast daily runoff for the Kadam watershed of G-5 sub-basin of Godavari river basin. On the ...

متن کامل

Weather forecasting model using Artificial Neural Network

Weather forecasting has become an important field of research in the last few decades. In most of the cases the researcher had attempted to establish a linear relationship between the input weather data and the corresponding target data. But with the discovery of nonlinearity in the nature of weather data, the focus has shifted towards the nonlinear prediction of the weather data. Although, the...

متن کامل

Reservoir inflow forecasting using artificial neural network

Hydrologic forecasting plays an ever increasing role in water resource management, as engineers are required to make component forecasts of natural inflows to reservoirs for numerous purposes. Resulting forecast techniques vary with the system purpose, physical characteristics, and availability of data. As most hydrological parameters are subjected to the uncertainty, a proper forecasting metho...

متن کامل

Flood Forecasting Using Neural Networks

This paper deals with flood routing in rivers using neural networks. The unsteady river flow may be formulated in terms of two one-dimensional partial differential equations. These are the Saint Venant flow continuity and dynamic equations. Several methods of solution of these equations are known. These methods are based upon characteristics of equations, finite difference, finite element and f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IOP conference series

سال: 2022

ISSN: ['1757-899X', '1757-8981']

DOI: https://doi.org/10.1088/1755-1315/1086/1/012036